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SUMMARY

In this work, we present a finite element model to approximate the modified Boussinesq equations. The
objective is to deal with the major problem associated with this system of equations, namely, the need to
use stable velocity-depth interpolations, which can be overcome by the use of a stabilization technique. The
one described in this paper is based on the splitting of the unknowns into their finite element component
and the remainder, which we call the subgrid scale. We also discuss the treatment of high-order derivatives
of the mathematical model and describe the time integration scheme. Copyright © 2008 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

There are several mathematical models for flows in shallow domains. However, a feature they
have in common is the mathematical structure of the coupling between the water elevation and the
velocity, the unknowns of the problem. This coupling is already present in the simplest setting,
modeling linear gravity waves in shallow domains, and is also present in more complex models,
such as the Saint-Venant or the Boussinesq equations.

In this work, we present a finite element approximation of the modified Boussinesq equations
introduced in [1]. We treat different aspects related to this problem, such as the way to deal with
third-order derivatives, the linearization or the time integration. However, the main topic is the
development of a formulation allowing to use equal interpolation for the water elevation and the
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1250 R. CODINA ET AL.

velocity. In general, this is not possible, not even for the linear problem using the classical Galerkin
method.

Our formulation is based on the variational multiscale approach in the format introduced in [2, 3].
The basic idea is to split the unknowns into a resolvable component, which can be reproduced
by the discretization method (in our case finite elements) and the remainder, which we will call
subgrid scale or subscale. Rather than solving exactly for the latter, the formulation results from
a closed-form approximation for the subscales, which is designed in order to capture their effect
on the discrete finite element solution. This leads to a formulation that allows the use of equal
velocity-depth interpolations. In this sense, this work is an extension of [4].

Several attempts to approximate the modified Boussinesq equations can be found in the literature.
An early finite difference approximation can be found in [5] and another popular finite difference
model in [6]. Finite element approximations were introduced later, see, for example, [7-10].
In these references, high-frequency oscillations over the grid used to discretize the domain are
mentioned, and methods to overcome them by ad hoc filtering techniques or by the addition of
numerical viscosity are reported, for example, in [9] and references therein (see also [10]). In the
finite difference context, different grids can be used for the approximation of velocity and water
elevation (see [7], for example). Surprisingly, there seems to be no explicit association between the
instability problems encountered and the lack of stability of the Galerkin method and, consequently,
the problem has not been tackled using stabilized finite element methods. This is precisely the
approach advocated in this work. Of course, there are several works dealing with stabilization for
shallow water equations, but usually intended either to stabilize low viscosity flows or important
source terms. For example, the Taylor—Galerkin method, originally presented in [11], was used for
solving the shallow water equations in [12], whereas characteristic-based schemes were proposed
in [13, 14]. A Galerkin/least-square formulation was presented in [15].

This paper is organized as follows. In Section 2 we state the initial and boundary value problem
to be solved, both in its differential and in its weak form. The space discretization is presented
in Section 3. The main contribution of this work is presented in Section 4, where a stabilized
finite element method is proposed. After presenting the basis of the formulation, its application to
the linearized non-dispersive model is studied in detail. The algorithmic parameters on which the
formulation depends are designed on the basis of a Fourier analysis of the problem, similar to that
proposed in [4, 16]. The formulation is then extended to the extended Boussinesq model, after some
considerations on the application of this type of stabilization techniques to non-linear problems.
In Section 5 we propose a finite difference scheme to integrate the equations in time based on a
predictor—corrector algorithm. We then present the numerical results of two representative examples,
merely intended to demonstrate the misbehavior of the Galerkin method and the improvement
provided by the proposed formulation. Some concluding remarks close this work.

2. PROBLEM STATEMENT

2.1. Initial and boundary value problem

Let us consider the motion of a fluid in a shallow domain whose horizontal projection is Q C R?
and whose depth, measured when the fluid is at rest from a horizontal free surface to the bottom of
the domain, is H(x),x=(x,x2) € Q. The vertical coordinate is taken x3 =0 at the free surface at
rest, so that x3 =— H (x) is the equation for the bathymetry. Let 7(x, #) be the free surface elevation
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FINITE ELEMENT APPROXIMATION OF THE MODIFIED BOUSSINESQ EQUATIONS 1251

of the fluid in motion and u(x, ¢) the velocity measured at x3=fH, with the parameter f given,
and with ¢ € [0, T'], the time interval of analysis.

Let a be the amplitude and A the wavelength of a characteristic mode of a wave propagating
in the domain of analysis. Let also Hp be a characteristic depth of this domain, and define the
dimensionless numbers

The Boussinesq wave theory is obtained by expanding the equations of motion for an inviscid
incompressible fluid in terms of ¢ and u, and retaining only the terms of order up to O(¢) and
O(u?), so that it requires ¢ < 1, u< 1 and &/p>=0(1).

The modified Boussinesq equations presented in [1] can be expressed as

dn+V-(Hu)+eV-(qu) + 1>V -J, =0 (1)
dru+gVn+eu-Vu+p2J, =0 )

where g is the magnitude of the gravity acceleration and we have introduced the auxiliary fields

J,:=C\H’E+C3H’E" 3)
J.:=CH?0,E+pHI,EX “4)
E:=VD, D:=V-u 5)
Ef:=vD?  DH:.=Vv.(Hu) (6)

where C;, i =1, 2,3, are constants defined in terms of § by
1/, 1 B> 1
Ci=- —=), Cr=—, (C3= — 7
1=37 (ﬁ 3) 2=7 3 ﬁ+2 (7

The value for the parameter f§ suggested in [1] is f=—0.531.
The boundary conditions to be considered are of three types:

e Inflow boundary, I't: The elevation is known, so that
n=i onli

where the overbar denotes given boundary conditions. The velocity u depends on the elevation
1, and can be computed from the linear theory, if wished. Imposing this velocity is required
if one wants to consider ¢ arbitrary.

e Reflecting boundary, T'r: In this case, the normal component of the velocity must be zero. It
can be shown that this implies that the normal component of J,, must vanish [6], so that

n-u=0 and n-J,=0 onlI}y

e Absorbing boundary, Iy =0Q\I'1\I'r: Following Wei and Kirby [6], where the ideas of
Israeli and Orzag [17] are implemented, a possible way to deal with absorbing boundaries is
to add a diffusion term to both Equations (1) and (2) close to the boundary where the waves
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1252 R. CODINA ET AL.

need to be absorbed. The diffusion coefficient is considered to be of exponential type, varying
from zero to a given value in a layer next to the absorbing boundary and with numerically
tuned constants. The boundary condition is effectively applied when the fictitious diffusion
term added is integrated by parts and the boundary term is dropped. Another possibility would
be to use Berenger’s perfectly matched layer [18].

Finally, initial conditions of the form #(x,0)=7"(x) and u(x,0) =u’(x) have to be appended
to the problem defined by (1)-(6) and the boundary conditions just described.

2.2. Variational problem

Let us obtain now the weak or variational form of problem (1)-(2) with the boundary conditions
just described. Let £(x) and v(x) be the elevation and velocity test functions, respectively, belonging
to the appropriate functional spaces. To account for the boundary conditions described, £ must
vanish on I'T and the normal component of v must vanish on I'g.

Multiplying (1) by ¢ and (2) by v and integrating by parts, one obtains

/iatndx—/Vf-(Hu)dx—e/V@(nu)dx—uz/ Vé-J,dx=0 ®)
Q Q Q Q

/V-6tudx+g/V-Vndx-l—s/V~(u-Vu)dx+,u2/V~Judx=0 )
Q Q Q Q

which must hold for all test functions ¢ and v. The boundary terms that arise from integration by
parts in (8) vanish, that is,

/én-u(H—i—sn)dx—i—pﬂ/ én-J,dx=0
0Q oQ

since {=0on I'f and n-u=0, n-J,=0 on I'r.

The auxiliary fields J;,; and J,, defined in (3) and (4), respectively, involve second derivatives of
the velocity. To cope with them, there are basically two options, either to project directly E and
EX in (5) and (6) or to project first D and D Let us discuss both possibilities.

Projection of E and Ef: The idea in this case is to consider (5) and (6) as additional equations to
complete the problem in order to reduce the need for regularity of the finite element approximation.
This approach is followed, for example, in [9]. Since n-J,, must vanish on I'g for all values of f,
we must have n-E=n-Ef =0 on this boundary. Let F and F be the appropriate test functions
for E and E¥, respectively. The equations for fields E and E¥ are

/E-Fdx:—/ (V-F)(V-u)dx—l—/ m-F)(V-u)dx (10)
Q Q I

/EH.Fde=—/(V-FH)(V.(Hu))dx+/ (m-FA)(V-(Hu))dx (11)
Q Q I

The boundary integral over I'g is zero, since the test functions F and F# must vanish there. This
is why only the integral over 11 appears in the previous expressions.
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FINITE ELEMENT APPROXIMATION OF THE MODIFIED BOUSSINESQ EQUATIONS 1253

This approach requires more regularity on the velocity than the original equations. In particular,
V -u restricted to the boundary needs to make sense.

Projection of D and D' : A second possibility is to project D and D* in (5) and (6), respectively.
If G and G" are the corresponding test functions, the variational equations to be considered are

/E-Fdx:/F-VDdX, /GDdX:/GV-udx

Q Q Q Q
/EH-Fde=/FH~VDde, /GHDde=/GHV-(Hu)dx
Q Q Q Q

In this case, no boundary conditions are explicitly required, neither for the unknowns E, E¥, D
and D nor for the corresponding test functions F, FH, G and G”.

Remark 1
The last term in (9) could be integrated by parts as follows:

/V-Judx=—Cg/V-(HZV)V-(atu)dx—ﬁ/V-(HV)V-(H&,u)dx
Q Q Q

+C2/ n-(sz)V'(atu)d)H—ﬁ/ n-(Hv)V-(Hd:u)dx
0Q 0Q

The boundary integrals vanish on I'g, but not on I't and therefore they would have to be evaluated
over this boundary. This approach would avoid the need of using any projection to deal with J,,,
although it would be still needed for J,.

3. SPACE DISCRETIZATION USING THE GALERKIN METHOD

3.1. Discrete variational equations

Let {Q°} be a finite element partition of the domain Q, with e=1, ..., n¢, of size h=max, h®,
h¢ =diam(Q°). Let also V}, be a finite element space constructed from this partition using continuous
Lagrangian interpolation within each element domain. Clearly, this space is a subspace of the space
where the continuous unknowns (elevation and velocity components) must be defined. We intend
to use equal interpolation for both, and therefore the problem consists in seeking #, (-, t) € Vj, and
u, (-, 1) € th satisfying the adequate boundary conditions and solution of the finite-dimensional
time evolution problem

/fhazﬂhdx—/vfh'(Huh)dX—S/ th'(’?hllh)dx—uzf V& -Jyndx=0 (12)
Q Q Q Q

/vh-ﬁtuhdx+g/vh~V11hdx+8/ vh~(uh~Vuh)dx+u2/ Vi -Jundx=0 (13)
Q Q Q Q

which must hold for all test functions &, € V), and vy, € th satisfying the corresponding homoge-
neous boundary conditions. Initial conditions have to be appended to this initial value problem.
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1254 R. CODINA ET AL.

The vector fields J, , and J, ; are given by
Jyn=Ci1H*E;, +C3H?E]! (14)
Jun=CoH*3,Ep+BHOE] (15)

where using option (10)—(11) to deal with derivatives of order higher than 2, E; and Ef can in
turn be obtained from the discrete variational equations

/Eh-thX=—/ (V-Fh)(V-uh)dX—l—/ n-Fp)(V-uy)dx (16)
Q Q I

/Ef-Ffdx:—/(V-F,’f)(V-(Huh))dx—F/ (m-F7)(V.(Huy))dx (17)
Q Q I

which must hold for all test functions Fj, € th, F,f’ € Vh2, again satisfying the adequate boundary
conditions.

The standard Galerkin finite element approximation to problem (8)—(9) and (10)—(11) is (12)—
(13) and (16)—(17). It is the main goal of this work to show that it is unstable and to devise a
modification to enhance its stability properties. Before that, let us consider its matrix structure.

3.2. Matrix formulation

The discrete finite element problem (12)—(13) leads to the following system of ordinary differential
equations:

Myii+Kpu+eK 1+ > (K3 E+KE") =0 (18)
Myii+Kyn+eKpu+ 12 (KnE+KEEH)=0 (19)

where 7 denotes here the vector of nodal unknowns of the elevation function, u of the velocity
and E and EX of the vector fields E;, and E,’l{ . The dot denotes time differentiation and the
identification of the different matrices in (18)—-(19) with the terms from where they come in
(12)—(13) is straightforward.

Similarly, Equations (16)—(17) can be expressed in the matrix form as

MpE=Ksu, E=M; K3u (20)
MpE? =gy, EH=Mm;'Klu Q1)

Therefore, inserting the expressions of E and Ef into (18)-(19) yields a system of ordinary
differential equations with the matrix structure

Myit+ Kipu+eKy (w)n+ 12 Kiu=0 (22)
Myii+ Ko+ e Koo (u)u+ 12 K310 =0 (23)
Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1249-1268
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FINITE ELEMENT APPROXIMATION OF THE MODIFIED BOUSSINESQ EQUATIONS 1255

with matrices K5 and KJ; given by
Ki=KiMg' Ky + KM K2
K3 =KpuMp' K3 +KiM; K1

Even though the stabilized formulation we will present later on will change the expression of
the different matrices appearing in (22)—(23), the structure of the resulting system of ordinary
differential equations will be the same. In Section 5 we will present a time integration scheme
of predictor—corrector type, which will allow us to integrate in time taking into account the non-
linearity of the system.

3.3. Numerical problems

Apart from the challenge of designing a time integration scheme capable to capture the frequencies
involved in the physics modeled by the equations considered, there are two numerical difficulties
associated with the Galerkin method. One of them is related to the least-squares projection involved
in (22)—(23) and the other is the stability of the formulation.

Equation for the intermediate fields E and E¥ : Matrix Mg is not an M-matrix, since in general
the off-diagonal components are greater than zero (recall that a matrix M is said to be an M-matrix
if M;;<0 for i #j and Mi;120 for all i, j). Therefore, it is not guaranteed that the components

of E have the same sign as the components of K3ju (and similarly for E¥ and Kﬁ u). This is
numerically reflected by the fact that the components of E (and E*) may oscillate from one node
of the finite element mesh to the other in a completely unphysical way when the components of
K31u change abruptly from one node to its neighbors. This is the so-called Gibbs phenomenon.
A way to avoid this problem is to use a diagonal expression for Mg, which can be obtained from
a nodal numerical integration rule. In the case of linear elements, this coincides with the classical
mass lumping technique.

Compatibility of the interpolation of n;, and wy: The question that arises once the discrete
problem is set is whether it is stable or not. It turns out that for the equal-order interpolation for
1, and uy, considered the answer is that there is not enough stability from the numerical point of
view. The explanation of this instability in the linear case can be found in [4]. The main idea is
as follows. For the continuous problem, one may take as test functions in (8)—(9) £=V-u and
v=Vy. This yields control over the divergence of the velocity and the gradient of the elevation.
However, for the discrete problem (12)—(13) it is not possible to take &, =V -uy and v, =V,
since for continuous interpolations V-uy and V), are obviously discontinuous and do not belong
to the space of test functions for elevation and velocity, respectively.

4. STABILIZED FINITE ELEMENT METHOD

4.1. General framework

In this section, we present a stabilized finite element method aimed to overcome the instability
problems of the standard Galerkin method. This formulation is an extension of [4] to account for
convection and non-linearity.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1249-1268
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1256 R. CODINA ET AL.

We start considering an abstract linear first-order partial differential equation of the form
0:U+A;0;U=F (24)

in which the linear non-dispersive problem can be recast. In (24), A; are nynk X nypk Mmatrices,
i=1,2,...,d, and F is a vector of nypx components, nyyx being the number of scalar unknowns
in U and d the space dimension (in our case, d =2). It is understood that repeated subscripts sum
over the number of space dimensions.

The stabilized finite element method we will present has its roots in the variational multiscale
decomposition proposed in [3]. Let us split the unknown U as U=Uj, +U’, where Uj, is the finite
element solution we are looking for and U’ the component of U that cannot be captured by the finite
element mesh. We will call it subgrid scale or, simply, subscale. The idea is that an approximation
for U’ will lead to a problem for U, with enhanced stability properties with respect to the standard
Galerkin method.

Let us consider the problem posed for U(-,#). The inner product in L2(Q) is denoted by (-, ).
The weak form of the problem consists in finding U and U’ such that

(0 Un, Vi) + (0 U, Vi) +(A;0;Up, Vi) + (A; 0; U, V) = (F, V) (25)
0:Up, V) + (06U, V) +(A;0;Up, V)+(A;0; U, V)= (F, V') (26)

for all Vj, in the finite element space and V' in the space of subscales.

Let us start introducing the approximations to compute U’ and, as a consequence, leading to
the stabilized finite element problem for Uy. First of all, we consider that both U, and U’ are
continuous across interelement boundaries and that U’ varies in time much more slowly than Uy,
so that its time derivative can be neglected. This is defined in [16] as the assumption of quasi-static
subscales. Problem (25)—(26) can be expressed as

(0/Un, Vi) + (A;0;Up, Vi) — (U, Aj0; Vi) = (F, Vy,) 27)
P'(A;0;U") = P'(F—(0,U,+A;0;Up)) =:Ry, (28)
where P’ is the L2-projection onto the space of subscales.

Remark 2

It is also possible to consider the subscales to be time dependent, and therefore to integrate them
in time. This approach is explained in [19, 20] for the incompressible Navier—Stokes equations,
where it is shown that it improves considerably the time stability of the resulting formulation.
However, our interest now is to improve the stability in spatial norms, and therefore we will not
pursue this approach here.

Equation (28) needs to be approximated to obtain a closed-form expression for U’ which, once
inserted into (27), will lead to the stabilized finite element problem for Uj;. Observe that Ry in
(28) can be considered as the residual of the finite element approximation projected onto the space
of subscales.

The basic heuristic idea is to consider that since U’ is the component of the unknown unresolved
by the finite element space, its Fourier transform must be dominated by wave numbers of the form
(1/h)k, where k= (ky, ..., kg) is dimensionless and of order (1) and % is the mesh size.

Let M be a symmetric and positive matrix that defines an inner product in the space of forcing
terms, and let |- |3 be the norm with respect to this matrix, that is, |F|2, =F'MF (note that F'F
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FINITE ELEMENT APPROXIMATION OF THE MODIFIED BOUSSINESQ EQUATIONS 1257

in general is not even dimensionally meaningful). Likewise, let | - |3 be the L?-norm of |-|p.
The Fourier transform of a function f will be denoted as f. Taking this Fourier transform of (28)
yields

A 1 A A
kU = _iﬁijjU/th
and then taking the M-norm of this complex-valuated algebraic equation yields
~ A ~ 1 A A~ £~

U' @My @0 =0 (ﬁki k;AIMA ,-) U =R, MR, (29)
From this expression we obtain

IR = [ 1R ak= [ 157000 Byaks [ 17008, 10 0k

= / | &) 31013, dk = |7 KO3, 1015,

where k° is a wave number whose existence is guaranteed by the mean value theorem and the
integrals extend over the wave number space.

Let us assume now that the subscales are approximated as U' =1R},, where 7 is a symmetric and
positive-definite matrix to be determined. A similar calculation to the previous one would yield
||Rh||ﬁ4<|r_1|%4||ﬁ/|lﬁ,[. This suggests to take t such that |1:_1|12\,I: |#(KY)|3,, that is to say,

t—Ing—1 e L 0,04t
sup X't Mt X= sup X—z(kik,-Al-MAj)X (30)
X|y=1 Xly=1 h=

Of course k® is unknown, and their components have to be understood as algorithmic constants.
The hope is that the approximated subscale will bound the residual of the finite element solution
as the exact subscale bounds the residual of the finite element component of the exact solution.
This bound will not be exactly the same, but will have the same asymptotic behavior in terms of
h and the coefficients of the equation to be solved.

A practical way to impose condition (30) is to compute the spectrum of matrices T~ 'Mt~! and
h_z(k?k?A}MA j) with respect to matrix M and impose that at least the spectral radius be the
same. We will analyze different particular cases. In the simplest, the spectra of both matrices will
be the same, in the second one only two of the three eigenvalues will coincide, and in the third
one only the largest eigenvalue, i.e. the spectral radius, will be coincident.

The final problem for the finite element component of the unknown is obtained by inserting
expression U'=1R;, into (27). Noting that the approximation for the subscale is local to each
element and using the notation (-, -)qe for the integral of the product of two functions on Q°, the
final discrete variational equation is

(0:Up, Vi) +(A;0iUp, Vi) — (F, Vp)
Nel
+) (A0 Vi, TP (0, Uy +Ai0iUp —F)) e =0 (31)

e=1

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1249-1268
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We will apply now this general framework to the problem we are considering. The first step is to
design matrix t. We will do this in the case of the linearized non-dispersive problem.

4.2. Application to the linearized non-dispersive problem

4.2.1. Stabilization parameters. To motivate the design of the stabilization parameters we propose,
let us consider the non-dispersive problem and linearized using a constant velocity field ug, so that
the differential equations of the problem are

om+HYV -uteug-Vin=f, (32)
dru+gVn+eug-Vu=f, (33)

In this case, the advection matrices A;, i =1, 2, are given by

Eup,1 H 0 U2 0 H
A= g Eu,1 0 , A= 0 £U0,2 0 (34)
0 0 EUp,1 g 0 EUQ,2

and the scaling matrix S is given by

£ 00
H

S=10 1 0 (33)
0 0 1

In this particular case, the scaling matrix defines also an inner product in the force space, that is to
say, the same matrix makes dimensionally well defined the matrix product V'SF and F'SF. This
dimensionality can be checked as follows:

8
VSE= & fytuf
[%m] —LT 2L 'LLT '=12T3
Wh]=LT 'LT2=1°T"3
8 2, 2
F'SF= " [} +/,
[ﬁfz] B S R e B T
H"
=1
where the brackets [-] denote a dimensional group and L the length and T the time.
Our objective now is to design the matrix of stabilization parameters t so that (30) is satisfied. In
fact, the optimal situation would be to choose T satisfying T~ Mt~ = h_z(k?k(}A} MA ;). However,
we will also try to choose t as simple as possible. In particular, we shall see that it is possible to

take T diagonal and satisfy condition (30), although the equality just mentioned will not hold.

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1249-1268
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For the matrices given by (34) and (35), it is found that

1
ﬁk?kgAESA i
g
FIKP+e2 6 w)? - 2e(ko uo)gk) 26 (ko ug) k3
1
=2 2¢ (ko -up) gk? gH (k) + &2 (K" -up)? gHKY)
2¢(ko-up)gk? gHKK) gH (k9)? 4% (k" -up)?

When up =0 this matrix is singular. This is due to the fact that it does not contain the information

on the boundary conditions that allows to invert the differential operator from where it comes.
Let us denote by Spec,,(B) the spectrum of a matrix B with respect to the inner product M,

that is, the set of eigenvalues 4 of the generalized eigenvalue problem BU=/MU. It turns out that

Specs (k k)AISA ) ={(e (k- ug) +v/g HIK)?, &> (k- ug)?, (¢ (k- up) — /g H[K"])?}

Obviously, kO is unknown, so that we may consider its norm and its angle with ug algorithmic
constants and write the previous expression as

Specs (ki k}A{SA ) = {(Ciglugl +C2y/g H)?, CTe?uol?, (Crelug| — Cav/g H))

The values of C; and C, (not to be confused with the constants of the model given by (7)) need
to be determined from numerical experiments.

Let us now assume that t is diagonal. Since the two scalar equations for the velocity components
have the same form, we may take it as t=diag(ty, 4, 74). Clearly, 1St will also be diag-
onal, and it is impossible that it behaves as h_z(k?k?A§SA ;). However, since Spec S('c_lSt_l) =
(072,072, 12

1T T }, a way to choose 7 satisfying (30) is to take t,=1, =7 and

h
T=
Cielug|+Cr/gH

t=1l, (36)

It is observed that

e In the 1D problem without convection (¢ =0) it turns out that t1St! :h_z(k?k?AESA i)
This is the optimal situation.
e In the 2D problem without convection (¢ =0), matrix h_z(k?k?AESA ;) has two eigenvalues

equal to the diagonal entries of 1718t~ !, and the third one is zero.
e In the 2D case with convection, the diagonal entries of t~!St~! coincide with the largest
eigenvalue of /2 (k/kIAISA ).

In all the cases, condition (30) is satisfied.

4.2.2. Stabilized formulation. Let us consider again the linearized non-dispersive problem defined
by Equations (32)—(33). As boundary conditions we will take #=0 on the whole 0€Q. In order
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to have a well-posed problem for all £>0, we need to prescribe boundary conditions for u on
the inflow part of the boundary, that is to say, where n-ug<0. We take u=0 there. With these
boundary conditions, we will have that

2

/n(u0~Vr/)dX=/ n-uon—dx=0 37
Q Fle) 2
luf?
u-(ug-Vuo)dx= n-uyg— dx>=0 (38)
Q o0 2

Using the matrix of stabilization parameters given by (36) and taking into account that for H
and ug constant the stabilization parameter t will be the same for all the elements of the finite
element mesh, the general stabilized formulation (31) becomes

8 A £ 8 8

0= E(Otnh’ ¢n)— gy, VE,) — E(suonh, Vi) — H(f"’ ¢n)
+(0rup, Vi) +& (V. vi) + (euo- Vuy, vi) — (£, vir)
+T%(P/(at’7h +HV w,+eug- Vi, — fy), HV vy +eug-VEy)

+t(P'(Oup+g Vi, +eug-Vu, —£,), gVE, +eug-Vvy) (39)

which must hold for all test functions £, and vj, in the appropriate spaces. The terms in the first two
rows of this variational equation correspond to the Galerkin contribution, whereas those multiplied
by 7 should provide stabilization. This single equation can obviously be expressed in the more
usual form of two discrete variational equations.

4.3. Stabilized finite element method for the general problem

4.3.1. Stabilization of non-linear problems. The difficulty to extend stabilized finite element
methods to non-linear problems is to define which is the linear operator that has to be applied to
the test functions in the stabilization terms. This depends on the linearization technique employed.
To explain this, let us consider an abstract stationary problem of the form

Aw)=f

with u € V, and suppose that we solve it iteratively. In this equation, A(«) is a non-linear operator
and f a given forcing term. Given a guess for the solution, that we still denote by u, we compute
a correction Ju from the scheme

Lu)ou=f—A(u)

where L(u) is the iteration operator of the iterative process. If (-,-) denotes the pairing between
V and its dual, the weak form of the problem can be expressed in the abstract form as

(v, L(u)ou)= (v, f —Au)) YveV

Let us consider the test function v split as v+ v’, for a certain decomposition V =V @V’ that can
be associated with resolvable and unresolvable scales of a numerical approximation. Similarly,
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consider that ou =i+ du’, and assume that ou’ is approximated by
ou'=t P'(f —A(u)— L(u)du)

where 77 is a matrix that approximates (P’ L(u))~" and P’ is the projection onto V'. The equation
to be solved projected onto V reads

(U, L(u)dit) + (L*(u)v, 1, P’ (f — A(u) — L(u)dit)) = (v, f — A(u))
where L*(u) is the adjoint of L(u). At convergence, du =0, so that the problem finally solved is
(0, A@)) +(=L*()v, 7L P'Au)) = (0, f)+(=L*(w)v, 7L P'f) (40)

It is observed that the terms that could be considered associated with stabilization depend on
operator L(u). An obvious choice would be to use the tangent operator, that is to say, L(u) =A'(u),
where A’(u) is the (Fréchet) derivative of A(u). In the particular case A(u)= B(u)u, it is possible
to use a fixed point iteration and take L(u)= B(u). This is what we do next.

4.3.2. Application to the modified Boussinesq equations. The design of the matrix of stabilization
parameters presented has been motivated in a linearized version of the problem as the last one
described, assuming given the velocity in V- (yu) of (1) and also the advective velocity in u- Vu.
Thus, our stabilization method will be of form (40) with L(u) the operator obtained with a given
velocity in the first component and in the advective term of the second component of this vector
operator. The resulting formulation consists of finding #,, and u;, in the appropriate finite element
spaces such that

8 g g 8
Fo(a’”’“ En)— FO(Huh, Vé) — Fos(ﬂhuh, VE) — FO;B(Jn,h, Vé)

+(rup, Vi) +8(Viy, Vi) +e(ay - Vg, vi) + 12 Jun, Vi)
g Nel

o D TP @ty V - (Hwp) +eV - () + 10V Ty ),
0e:l

V- (Hvp)+eV-(&pup))qe

Nel

+> TP @+ gV +eup - Vuy+ 2Ty p). gV E s VVy) e =0 (41)

e=1

for all test functions &, and vy. Here, Hp is a characteristic depth only needed to scale the
equations.

Problem (41), with t given by (36) and the auxiliary equations (14)—(15) and (16)—(17), is
the stabilized finite element method we propose for the spatial discretization of the modified
Boussinesq equations.
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Remark 3

1. The stabilization parameter t given by (36) needs to be evaluated now with a characteristic
element velocity, for example, the mean over each element. Instead of the mesh size &, the
element size h° has to be used if the mesh is not uniform.

2. It has to be noted that if the space of subscales is taken orthogonal to the finite element space,
that is, P’= P+, then P’(d,17,)=0, P’(6;u,)=0. The mass matrix of the linear system will
not be modified with respect to the Galerkin method.

3. We have not included the dispersive operator applied to the test function. The hope is that its
influence on the stability of the scheme is small. The formulation is in any case consistent, in
the sense that the exact solution satisfies also Equation (41) for all test functions &, and vy,.

5. TIME INTEGRATION SCHEME

Problem (41) is a system of non-linear ordinary differential equations that, expressed in a matrix
form, reads

M3#=F(x,%)=A(x)+ B (42)

where x is the vector of unknowns (elevations and velocities), x its time derivative, M is a mass
matrix, A(x) a non-linear vector function and B a constant matrix. The linear dependence of
F(x,x) with X comes from the additional fields J, and J, defined in (3) and (4), respectively.

The objective now is to present a time integration scheme for (42) taking into account its non-
linearity. Let us consider a partition of the time interval [0, 7] into time steps of, for simplicity,
equal size o¢t. We denote with superscript n the approximation of a function at time " =ndz.

As basic time integration algorithm, we consider the fourth-order Adams—Moulton method.
Once the solution is known until time step #, the solution at time step n+ 1 is computed from

ot
ey ﬂM—1 OF" ! 4+ 19F" —5F"' 4 F*"2) 4 0 (5%

Once the O (5r*) terms are neglected, this is a non-linear algebraic equation due to the non-linear
dependence of F on x. In order to deal with this non-linearity, we may use the following iterative
version: given a guess x" L=l for xn+1 at jteration § — 1, the ith iterate is computed as

anrl,i:xn_i_i_;Mfl(anJrl,ifl+19Fn,i71_Sanl,ifl+Fn72,i71)+0(5t4)

where
Fkﬂ.*l:A(xk)—l—B)'Ck’iil, k=n—-2,n—1,n,n+1

The approximations used for the time derivative are

‘ 1 i
b=l — (il gyn pgyn—! —2x”72)+0(5l3)

60t
L 1 .
xi’l,l—] — _(an+1,l—1 _3x}’l —6xn_1 +xn—2)+ 0(5t3)
60t
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xn—l,t—] — @(_XVH‘],!—] +6x"—3xn_1 —2x”_2)+0(5t3)

. 1 .
X,l’l—z,l—] — @(2)‘:}14-1,!—1 _9xn + 18xn_1 _ 1 lxn—Z) + 0(513)

that are obtained from the classical Taylor expansion around the time level of interest (n+1,n,n—1

and n—2, respectively). We need to estimate x" -0 only using x”, x”~! and x”~2. This can be

done by the explicit third-order Adams—Bashforth scheme, which reads

ot
X0 = " S M QIF - 16F" T £ SET ) 061

where

FF=AGM+Bi*, k=n—-2,n—1,n

1
= 2—&(3x" —4x" N X"+ 0(512)
X_}’l—l — _(xn _xn—1)+ 0(5t2)

2= —i(x" —4x" 1 133" 4 0(1%)
20t

This completes the definition of a time integration scheme well suited to capture the oscillating
flow phenomena described by the equations approximated. For similar schemes, see [6, 8, 10, 21].

It is important to note that, due to the predictor—corrector type of the scheme, convergence
problems may be encountered if the time step size is large. A Fourier analysis similar to the one
presented in Section 4.2.1 reveals that the critical time step of an explicit time integration scheme
must behave as 7 defined in (36). Numerical experiments indicate that it is convenient to take ot
of the same magnitude as 7 in order to avoid convergence problems.

6. NUMERICAL EXAMPLES

In order to test the proposed scheme, it has been implemented into the MANOLO software
developed at IH Cantabria, which is an extensive rework of the model presented in [10] with the
numerical formulation presented in this paper. MANOLO allows the definition of the computational
domain by means of unstructured triangular meshes. Linear interpolation at each element is used
for all variables.

This model has been tested in a large variety of situations and it has been found that it shows
a good agreement with analytical and experimental data. For a discussion of the quality of the
results of this model (using a slightly different stabilization scheme), see [22]. The examples in
this paper are more oriented to the comparison of the improvements of the stabilized formulation
over the non-stabilized one (where the stabilization parameter 7 is considered to be zero).

In order to find the appropriate values of the parameters Cq and C (see (36)), several tests have
been carried out. As a result of that, we have found that C; =C, =300 give the best performance,
avoiding instabilities without adding any appreciable diffusion.
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6.1. Gaussian hump

In this example, the behavior of fluid inside a square basin of perfectly reflective walls is studied.
The length of the basin sides is 6 m, and its bottom is located at z=—0.5 m (here and below we
denote (x1,x2,x3)=(x,V,2z)). The initial condition for the free surface is given by the formula

1 (x, y) =0.045 =263 +(=3)’]

which represents a Gaussian hump centered at the middle of the basin (see Figure 1). The velocity
field is zero at t =0.

This problem admits analytical solution for the linear, dispersive case and, for this reason, it
is commonly used for testing numerical models. In this case, we are interested in the solution of
the non-linear, dispersive equations which, to our knowledge, has no analytical solution, so the
comparison is done against the FUNWAVE finite difference model [6]. Figure 2 shows that there
is a very good agreement between both models.

Owing to the spatial nature of the instabilities originated by the use of equal interpolation for the
water elevation and the velocity without stabilization terms, these instabilities are more noticeable
in spatial slices of the free surface than in time series over a single point.

Figure 3 shows the comparison of the results of the model with and without the stabilization
mechanism. It can be seen that the latter shows spurious wiggles. These wiggles increase its
amplitude as time advances and, eventually, interfere with the time integration scheme, which is
not able to converge. On the other hand, the stabilized formulation shows a perfectly smooth free
surface, as expected.

=
T
s

Xm)

Figure 1. Gaussian hump setup.
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Figure 2. Free surface evolution: continuous line, finite differences model (FUNWAVE);
dotted line, proposed scheme (MANOLO).

6.2. Real case: Lastres Harbor

As mentioned in the Introduction, some authors try to overcome the problems associated with
the instability of the equations by means of artificial diffusion or ad hoc filters. We have found
that, although this approach usually gives reasonable results for small meshes and short simulation
periods, it fails for long periods of time and big meshes.

Our stabilized formulation allows to compute on large spatial domains and over long periods of
time, which is an important issue when dealing with real cases. As an example of this we present a
simulation for Lastres harbor, a small harbor in the north of Spain. The mesh used, which consists
of 20456 nodes and 40492 elements, is shown in Figure 4.

In the wave generation area, a wave is generated by adding or removing water as necessary at each
time step. The sponge layer uses a simple Newtonian cooling scheme to dissipate energy, consisting
of adding a force proportional to the velocity and in the opposite direction (see [6, 10, 22]).

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1249-1268

DOI: 10.1002/fid



1266

R. CODINA ET AL.

Time=49s Time=60's
002 : 002 :
0015} 0015 B
001 0011 1
0.008| 0005 1
E 0 B £ of E
= =
AT - - .
-0.005 » -0.006 ;F/ w e \\ 4
0.01 /{ "'*\'\\/\/J 001 ———d
Y 0015 B
002 . . . . 002 . . . . .
3 2 - 0 1 2 3 2 1 o 1 2 3
X(m) x(m)
Time=79's Time=85s
002 002 ! T T T T
0015 0015} B
001 0011 B
0005 0005 1
= = e e
£ ot E 0 / R \\\
= = . . .
0,005 0.005 \ *
001 001} J
0015} 0015 4
0,02 . . . . . 002 . . . . .
3 2 A o 1 2 3 2 A [ 1 2 3
x(m) x(m)

Figure 3. Free surface along the line y =0. Continuous line is the model with the non-stabilized equations.
Dotted line is the stabilized one.
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Figure 4. Lastres Harbor mesh.
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Figure 5. Free surface for Lastres Harbor along two different lines and at times =500 and 1500s.
Continuous line is the model with the non-stabilized equations. Dotted line is the stabilized one.

Figure 5 shows two slices of the free surface along the lines marked as Slice 1 and Slice 2 in
Figure 4 for two different times, t =500 and 1500s. It is clear that, in the non-stabilized model,
the amplitude of the instabilities increases as time advances. From a practical point of view, this
results in values of the agitation inside the harbor predicted by the non-stabilized model much
higher than the measured ones. On the other hand, the maximum values of agitation predicted by
the stabilized model coincide with those measured in the harbor.

In addition, the model with the stabilized formulation allows long simulation times, which is
crucial when studying physical processes that take long times to develop, like resonance inside
harbors.

7. CONCLUSIONS

In this paper, we have proposed a stabilized finite element method to solve the modified Boussinesq
equations. The lack of stability of the Galerkin method for this problem is inherited from the linear
wave equation expressed in the mixed form. Here, we have proposed a subgrid scale stabilized
method with a closed-form expression for the subscales derived from a Fourier analysis.

The implementation of resulting numerical method is simple, and fits naturally in classical finite
element codes. The element structure of the arrays to be assembled does not change. Likewise,
standard linearization procedures and time integration schemes can be adapted with no difficulty.

From the experimental point of view, the formulation certainly displays the behavior it was
designed for. The ‘noise’ observed in the Galerkin approximation is removed and smooth discrete
solutions are found.
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